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ON THE LATTICE STRUCTURE OF 
CERTAIN LINEAR CONGRUENTIAL SEQUENCES 

RELATED TO AWC/SWB GENERATORS 

RAYMOND COUTURE AND PIERRE L'ECUYER 

ABSTRACT. We analyze the lattice structure of certain types of linear congru- 
ential generators (LCGs), which include close approximations to the add-with- 
carry and subtract-with-borrow (AWC/SWB) random number generators intro- 
duced by Marsaglia and Zaman, and also to combinations of the latter with 
ordinary LCGs. It follows from our results that all these generators have an 
unfavorable lattice structure in large dimensions. 

1. INTRODUCTION 

New classes of random number generators with astronomically long periods 
have been proposed and recommended recently for certain applications which 
may require billions of random numbers [5, 9, 10]. First, Marsaglia and Zaman 
[10] introduced the add-with-carry (AWC) and subtract-with-borrow (SWB) 
generators. Marsaglia, Narasimhan, and Zaman [9] then proposed a genera- 
tor which combines a SWB with an LCG. Those generators looked promising 
at first sight, but statistical defects have quickly been discovered [2, 7]. The 
AWC/SWB generators have also been proved essentially equivalent to linear 
congruential generators (LCGs) with large moduli [11]. As a consequence, an 
AWC/SWB can be analyzed theoretically by examining the lattice structure of 
its associated LCG. 

In general, to any LCG based on the recurrence 

(1) xi+, _ axi + b (mod m), 

and for each dimension d, one may associate a lattice Ad in Rd, generated 
by the vector (1/m)(1, a, ..., ad-i) and Zd. It is well known [6] that the 
shorter vectors in the lattice A(d) dual to Ad afford critical information on 
the behavior of the generator. Algorithms to compute the shortest vector in 
a lattice are available [3]. However, the LCGs associated with the generators 
proposed in [10] have the peculiarity that their modulus can be fairly large (e.g., 
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m 10450), so that using directly the standard algorithms [3] to study A(d) and 
Ad can become impracticable in large dimensions. 

In this paper, we study the smallest vectors in the lattices of certain classes 
of LCGs, which include the LCGs associated with the AWC/SWB generators. 
In the next section, we derive general results for the case where the modulus m 
can be expressed as a linear combination of powers of a, with small coefficients. 
We show how a set of short vectors in A(d) can be obtained a priori and, under 
certain conditions, extended into a basis for A(d) . We then illustrate in ?3 how 
these results can be used to analyze the LCGs associated with AWC/SWB gen- 
erators. It follows, in particular, that all those LCGs have a bad lattice structure 
in large dimensions: for d larger than the largest lag of the AWC/SWB, the 
points in the d-dimensional unit hypercube lie in a set of parallel hyperplanes 
which are at least 1/ 4/3 apart. In ?4, we examine a broader class of LCGs, for 
which m can be decomposed as m = mIM2,where ml and m2 are relatively 
prime, and ml is as in ?2. Our results permit one to analyze, in particular, 
the (approximate) lattice structure of a class of generators which combine an 
AWC/SWB with an ordinary LCG. This is discussed in ??5 and 6. In one of 
our examples, we point out an important theoretical defect of the combined 
generator proposed by Marsaglia, Narasimhan, and Zaman [9]: in dimensions 
d > 45, the points lie in a set of parallel hyperplanes which are at least 1 /IV'6 
apart. That could explain the statistical anomalies observed in [2]. We also 
point out general limitations of such combined generators. 

We now recall some simple facts about lattices in Euclidean space. Given a 
lattice A in Rd, the quantity Idet(vl, ... , Vd)1 is independent of the choice 
of a basis vI, ... , Vd for A. We will call it the volume of A. The volume 
is inverted by passage from a lattice to its dual. If A C A' are two lattices, 
then the (group-theoretical) index [A' : A] (viewing A as a subgroup of A') is 
equal to the ratio of the volume of A to that of A'. As an illustration, since 
the index of Zd in Ad is equal to m, we can infer that the volume of Ad is 
equal to 1/rm and that of A(d) is equal to m. 

2. SHORTEST VECTORS IN A CLASS OF LATTICES 

We will assume in this section that the modulus m is represented as 
EjnI ciai-I for some integers cl, ..., en, with c $ 0. Although we do not 
make the requirement explicit, we are especially interested in the case of small 
coefficients ci. The reader may also think of a as moderately sized while m 
could be rather large (see Example 1 below). 

We denote by el, ..., ed the canonical basis in Rd. It follows from the 
definition of A(d) that a vector Ed ziei belongs to it if and only if it has 
integral coordinates zi satisfying the relation 

d 

(2) > zia'- 0 (mod m). 
i=l 

So, when the dimension satisfies d > n, the relation m = EZnI ciai-I provides 
us with a vector E7nI ciei in A(d) of magnitude comparable to that of the ci's. 
We also note that we have a set of (moderately sized) vectors in A(d), namely 
the wi = aei - ej+I, i = 1, ..., d - 1. 
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We first prove: 

Proposition 1. The lattice A(d) admits the basis formed by the set of vectors 
wi = aei - ei+i, i = 1, ... , d - 1, and Wd = Ej<d ciei + (E>d ciai-d)ed 

ProofJ Let A (resp. A') be the subgroup of A(d) generated by the set w1, ... 

Wd-l (resp. wI, ..., Wd). We have A C A' C A(d). Now, since Wd me, 
(mod A), the set wl, ..., d, me, is also a basis for A' whose volume is 
thus equal to Idet(mei, w1, ... , wd_)j = m. But this is also the volume of 
A(d), so [A(d): A'] = 1 and A' = A(d) . E 

We define a (linear) shift operator S over Rd by Sei = ei+I, for i = 
1, ..., d - 1, and Sed = 0. Clearly, S maps A(d) n (Rd-l x {O}) into A(d) . 

Proposition 2. Assume that d > n, so that Wd = _ c1e1. Then, the set of 
vectors w1, ... , Wn,I, Wd, SWd, ... , Sd-nwd generates a sublattice of A(d) 
of index equal to Icn d-n. In particular, if Ic = 1, this set of vectors forms a 
basis for A(d) . 

Proof. Let A' be this generated sublattice and let A be the lattice generated 
by the set wl, ... , wn . We have Wd_ me, (mod A) so that A' also admits 
the basis formed by the vectors me,, w1, ... , wn-,I SWd, ..., Sd-n wd. Its 
volume is thus equal to mlCn ld-n and the index [A(d): A'] to Icn ld-n. E 

Let H be the hyperplane in Rd generated by the set of vectors wI, ... , Wd-1. 
We view H as an Euclidean space with the metric inherited from that of Rd. 
From Proposition 1 it follows that H(d) = A(d) n H is the lattice in H generated 
by WI 5 ...,5 Wd-I d 

Proposition 3. The vectors w1, ... , Wd-1 are, with their opposites, the set of 
shortest vectors of H(d). 

Proof. We have 

jIZIWI + * + Zd-IWd-I 112 

=a2z2 + (z -aZ2)2 + *+ (Zd-2-azd-1)2 + zd2, 

and this cannot be smaller than a2 + 1 if the zi's are integral and not all 
zero. 0 

Let a be the least distance to H for a point of A(d) not in H. In or- 
der to determine this distance we first find an expression for the volume of 
the lattice H(d). The square of that volume is equal to the determinant 
lWi * Wjli<j,d . which is equal to Dd-l if we define Dn (for each n) as the 
n-rowed determinant 

a2+1 -a 0 
-a a2+1 -a 

Dn 0 -a a2 1. 
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Lemma 1. For all positive integers n we have 

a2n+2_ 1 
a2-1 

Proof. Clearly D1 = a2 + 1 and, if we put Do = 1, we have the recurrence 
Dn = (a2 + 1)Dn-1 - a2Dn-2, n > 2, which can also be written as Dn - DnI= 
a2(Dn-1 - Dn-2). The results then follows by induction on n. E 

Proposition 4. One has 
2_a2- 2 js2= a m2 

a2d -1 
Proof. From a generalization of the formula giving the area of a parallelogram 
as the product of the height by the base, we see that 5 is equal to the ratio of 
the volume of A(d) to that of H (d) . The squares of those volumes are m2 and 
Dd-l, respectively. The proposition then follows from Lemma 1. E 

Theorem 1. If the dimension d does not exceed M loga(m2 a2-i + 1), then the 12 10 a 2+ 1 

vectors W1, . W. , d are of shortest length in A(d) . 

Proof. In view of Proposition 4, our hypothesis amounts to the inequality a2 + 
1 < 62. The theorem then follows from Proposition 3. E 

3. THE AWC/SWB GENERATORS 

As shown in [11], an AWC/SWB generator in base a, with lags s < r, 
can be closely approximated by an LCG (1) with multiplier a and modulus 
m = ar ? as ? 1 . According to Proposition 1, this representation of m gives 
us, for d > r, a vector of length v3 in A(d). As a result, all the points 
of Ad lie in equidistant parallel hyperplanes which are at least 1/V3 apart. 
In other words, all AWC/SWB generators have a bad lattice structure in large 
dimensions. Proposition 2 tells us more: in any dimension d > r + 1, it gives 
us a system of d - r vectors of length X which can be completed to a basis of 
A(d) . This length is in fact minimal for all dimensions not exceeding the least 
integer f for which af =- 1 (mod m) . After that, we have a smaller vector of 
length v'2, namely ?eI - ef+l (the sign being the same as in the congruence), 
and it is minimal for all succeeding dimensions. To show this, we remark that 
since A(d) c Zd, vectors of length smaller than VX are either of the form ?ei 
or ?e ? ej ( i :$ j). Our statement then results from condition (2). 

In dimensions d < r, according to Theorem 1, the lattice A(d) has wl, ... 

Wd-l as a set of shortest vectors with their squared lengths equal to a2 + 1 . For 
d = r, one has Wd = ?eI ? es+, + aed, with squared length a2 + 2, but the 
condition of Theorem 1 is no longer satisfied. Nevertheless, one can prove as 
follows that a2 + 1 is again the squared length of a shortest vector in A(d) . By 
Propositions 3 and 4, a vector of shorter squared length must be of the form (up 
to a sign) zIwI + *. + Zd_lWd-l + wd . Then, as in the proof of Proposition 3, 
it is easily seen, using the special form of Wd, that the squared length of such 
a vector must exceed a2 if the coefficients zi are all integral. 

Example 1. One SWB generator recommended in [5, 10] has an associated LCG 
with multiplier a = 232 - 5 and modulus m = a43 a22 + 1. So, the length 
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of the shortest vector in A(d) is az2+ 1 232 - 5 for d < 43, vr when 
43 < d < (m- 1)/2, and VI for d > (mi- 1)/2. 

4. DECOMPOSABLE MODULI 

The pseudorandom sequence obtained by combining in various ways two or 
more LCGs is equivalent (or, in some cases, almost equivalent) to the sequence 
produced by an LCG whose modulus is the product of the individual moduli [8]. 
So, special consideration of LCGs with decomposable moduli could be useful 
for studying such combinations. Combining an AWC/SWB generator with an 
LCG is not exactly the same as combining two LCGs, but almost, because of the 
"approximation" property proved in [11]. The results developed in this section 
will permit us to analyze the lattice structure of such combined generators. 

When the modulus m admits a divisor mIn, the LCG sequence (1) also 
satisfies the same recurrence with ml as the modulus. The corresponding lattice 
Al ,d is then contained in Ad. If m2 is the complementary factor and A2, d 

is the corresponding lattice, then Ad= Al ,d + A2 d, A(d) = A(d) n A(d), and 
the sum is direct modulo Zd if ml and m2 have no common factors. In such 
a case, the volume of Ad is equal to the product of the volume of A1 d with 
that of A2 d and the index [Af(d): A(d)] is thus equal to M2, the volume of 
A(d) . Now, if Af(d) contains a vector w whose last coordinate is equal to zero, 
then A(d) will contain the vector a2w - Sw, where a2 is any integer satisfying 
the congruence a2- a (mod M2). If w and the multiplier a2 are small, this 
will provide us with a small vector in A(d) . Generalizing this construction, we 
obtain: 

Theorem 2. Let w E Af(d) have its last / coordinates equal to zero (O < / < d). 
Take any ZEl+I' ziei E A('+'). Then, the vector Eli`I ziSi-lw belongs to A(d). 

Proof Since the latter vector clearly belongs to Aid), we only need to prove that 
it belongs to A(d) . For this, it is sufficient to show that Eli=l ziSi-i e E A(d) 
for j < d - 1. By hypothesis, El+i' ziei E A('+'), so that EZi=I ziay-1 0 
(mod M2) and therefore El+' zia+'2 0 (mod M2) for j > 1 . This implies 

that the vector Ejiil ziSi-le1 = ziei+j1l belongs to Aid) .E 

We note that the length of the vector El+i ziSi-lw is bounded by 
w z i Iz z and, in case the Siw are orthogonal, its squared length is equal to 

jIwj12 ElZ l Iz,12. It turns out that in many instances (see the examples in the 
next section) this construction gives a shortest vector in A(d) . 

We now assume for the rest of this section that ml and M2 are relatively 
prime and that mlI is represented as 1In I cia'-' for some integers cl, .. ,cn 
with Cn $ 0, and where a, is an integer satisfying the congruence a, _ a 
(mod ml) . We will exhibit, in this situation, a basis of moderately sized vectors 
for the lattice A(d) . We denote by a2 any integer such that a2 -a (mod M2) 
and by w w(l) the basis for A('d obtained from Proposition 1. We put 

1d 

hi =a, - a2, h2 = cia-l +a2jlZciaVd, 
i<d i>d 
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and we take K = (kij) any integral 2 x 2 matrix of determinant equal to m2 
and satisfying the system of congruences 

3k2i k22) (h2)i o) (mod m2). 
(Such a matrix K always exists, for arbitrary integers h, and h2.) 

Proposition 5. The lattice A(d) admits the basis formed by the set of vectors 
a2 W(1) - SWO1), i = 1, ..,d - 2, and kilw(l) + ki2W( I) for i = 1, 2. 
Proof. Let A be the lattice generated by this set of vectors. From (3), the 
scalar product of each of the two vectors kilw(l) + ki2w (,) with the vector 
(1, a2, ... , ad-1) is congruent to 0 modulo m2 and therefore, these two vec- 
tors belong to A2d). Since they also clearly belong to Aid), they are in the 
intersection A(d) . The lattice A is thus contained in A(d). But since both in- 
dices [Ai(d) A] and [Ai(d): A(d)] are equal to m2, we must have A = A(d) . E 

Proposition 6. Let d > n. Then the set of vectors a2W(l) - Sw(1) for i = 

1, ..., n - 2, ki1w(l) + ki2w(1) for i = 1, 2, and a2Slwil) - Si+1W(1l) for 
i= 0, ..., d - n - 1, generates a sublattice of index Icn d-n in A(d). In 
particular, if Icn = 1, this set of vectors is a basis for A(d). 

Proof. Let A be the lattice generated by those vectors. As in the proof of the 
previous proposition, we see that A is a sublattice of A(d) . Let A' be the lattice 
generated by the set of vectors wl . Swn . Sdnwdl) 

Then, the index [A': A] = M2, so that [A(l A] = m2ljc d-n by Proposition 2, 
and we finally obtain [A(d): A] = [A (d): A]/[Af(d): A(d)] Icd-n. 

5. NUMERICAL EXAMPLES 

We will now give numerical illustrations of the results of the previous section. 
We use the same notation as in the preceding section. For a, and ml we take 
the same values as in Example 1, so in each case we will specify values only for 
a2 and i2. Each example considered is closely related to the combination of 
the SWB of Example 1 with an LCG (that will be discussed in the next section). 
We denote by wmin a shortest vector in A(d) . Our procedure for determining 
a shortest vector wmin is to use the lattice basis from Proposition 5 (or 6 if 
d > 44) as an input for the standard search algorithms [3]. We notice that, 
when d > 44, the vector obtained by Theorem 2 using w = w () with the 
shortest vector of A('+l) ( 1 = d - 44) happens to produce a Wmin in all the 
cases we examined. A similar phenomenon occurs for 2 < d < 44, but now 
using w = w(1) and taking l = d - 2. 

Example 2. Let a2 = 1 and M2 = 232. Table 1 describes a shortest vector 
wmin for dimensions up to 46. For the intermediate dimensions 5 to 43 the 
result is identical to the dimension-4 entry. This example is closely related to 
the combined generator proposed in [9] (see next section). 

Example 3. This example has a2 = 2736464641 and m2 = 232 - 232. The 
modulus has the prime factorization M2 = 3 x 73 x 13 x 412 x 191, and we 
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TABLE 1. A shortest vector for Example 2 

d Wmin IlWminlI 

2 231 w(1) .92E19 
3 (1 - S)w( ) .61E10 

4 (1 _ S2)vWj) .61E10 

43 (I _ S2) W(1) .61E10 
44 w23)+ 6w(l) .43E10 

45 (I - S)w( 06 

46 ( )d 06 

TABLE 2. A shortest vector for Example 3 

d Wmin llwminll 

2 (232 _232) W l) .18E20 
3 2009 (1-S) w() .12E14 
4 7(1 _ S)2 Wl) .74E11 
5 (1-S)3 WM .19E11 
6 ( 1-2S + 2S3-S4) W41) .14E11 
7 (1-2S + 2S3-S4) WO) .14E11 
8 (1-S_S2+S4+S5-S6)W(l) .llEll 
9 (1_S-S2+S4+S5_S6)W(l) . llEll 

10 (I S)(1 S7)WO) .86E10 
11 (I S2) (I S7) W (1) . 86E10 

14 (1 -S6)(1 -S7) W (1) .74E10 

44 w')- 3144796996 w44) .46E10 
45 41 x 72(1-S) WO) .49E4 
46 7(1-S)2 W() .30E2 
47 (1 - S) w47 
48 (1- 2S + 2S3 - S4) W48) 3 

49~~~~~~~~~4 0 J(1 + S _ S3 - S5) W4) 

50 (1 + S-_S3 - S5) W( ) vr- 
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TABLE 3. A shortest vector for Example 4 

d Wmin IlWminII 

44 wM + 1409018015 w(l) .35E10 23 ~~~44 *51 
45 (40883 + 13915S) w(5) .75E5 
46 (169-156S + 1225S2)w4) .22E4 
47 (2-S + 149S2 - 163S3)w4l) .22E3 
48 (38 + 55S + 6S2 - 18S3 + 29S4) wO) .75E2 

49 (9 + 85 + 5S2 + 2OS3 + 22S4 + 21S5) WO) .39E2 

50 (14 - 7S + 2S2-7S3 + 3S4 + 2S5 + 4S6) w(l) .18E2 

51 (4 + 85 + 5S2 - S3 + 5S4 - 255 4S6 - 8S7) w() .14E2 51 ~ ~ ~ ~ ~ .14E2~~~W5 
52 (3 - S + 6S2 + S3 _ 54 + 6S5 - 7 - 25S8) W(O) v/-- 5 2 ~ ~ ~ ~ ~ ~ ~ _ _ _ _ _~~~~~~5 

have a2- 1 (mod 3 x 13 x 191), a2 42 (mod 42), and a2 8 (mod 73), 
insuring full period m2 for any LCG based on the recurrence x+I =_ a2xi + b2 
(mod m2) with b2 prime to m2. A shortest vector is described in Table 2 for 
dimensions up to 50. Entries are identical for dimensions 11 to 13 and for 
dimensions 14 to 43. 

Example 4. Here we will use a2 = 742938285 with m2 = 231 - 1. This a2 is 
one of the five best multipliers (in terms of the spectral test for dimensions 2 
to 6) found by Fishman and Moore [4] for an MLCG with this modulus. A 
shortest vector is described in Table 3 for dimensions 44 to 52. 

6. COMBINING AWC/SWB AND LCG GENERATORS 

It follows from a theorem of Minkowski [1, p. 184] that, for any given positive 
number V, there exist lattices in Rd, of volume V and with a shortest vector 
Wmin, satisfying 

(4) IIWminII > Cd d/(2e)Vl/d,d 

where Cd = (d/(8ire))l/2d is close to 1 as d increases. Now consider again, 
as in ?3, an LCG with multiplier a and modulus m = ar + as + 1. The 
associated lattice A(d) has volume equal to m, and there exist lattices in Rd 
of volume m and with a shortest vector of length greater than d/(2ie) mlld 
(approximately). This lower bound is, when d = r + 1 say, far in excess of V/, 
the length of the shortest vector for A(d) (it is approximately .42E 10 for d = 44 
in case of Example 1). In this sense the lattice A(d) is far from optimal and 
the corresponding AWC/SWB generator also shares this relative defect. In this 
section we investigate to what extent it is possible to improve an AWC/SWB 
generator by means of a suitable combination with an LCG. 

A convenient recipe for combining an AWC/SWB with an LCG runs as fol- 
lows. We consider an AWC/SWB with lags s < r and base a,. Let yi, 
? < yi < a1, be its integer output. Let xi(2), 0 < x(2) < m2, be an inte- 

ger sequence satisfying xi, ai + b2 (mod m2). This will be the LCG 
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component. Let n* be a positive integer. The three integers al, m2 and m* 
should be close to one another. The combination is then defined as the least 
positive residue of yi + x(2) modulo m*, normalized through division by m* 
(For simplicity, we limit ourselves to this case although it may in fact be useful 
to consider more general linear combinations with several LCG components. 
Our method extends to the more general situation with obvious modifications.) 

Such a combination can be approximated by an LCG of the type discussed in 
?4, with ml = ar + al + 1, and a,, a2, m2 as above. We will refer to it as the 
LCG associated with the combination. We consider first the question of the size 
of the error ci in this approximation. Let x(1), 0 < x4) < ml , be an integer 

sequence satisfying x(l) = alx(l) (mod mln). Then xi = m2x(1) + mIx(2) will 
satisfy (1) with m = m1m2, b = m1b2, and a any solution of the pair of con- 
gruences a- a (mod ml) and a _ a2 (mod m2). The uniform variates asso- 
ciated with the x- and y-sequences are respectively xi/m = x(1)/mI + X(2)/M2 

and yi/a2. The error (modulo 1) qi is then determined by the conditions 

ei=(Yi + x(2))/m* - xi/m (mod 1) and -1/2 < qi < 1/2. We have 

Proposition 7. If the sequences x(1) and y are properly synchronized, then 

leil < ll/a + (la, - m*l + IM2 - m*I)/m*. 

Proof. We have leil < lx4l/m, -yi/al I+yl1/al - 1/m*I +4X2)I1/m2 - 1/m*l . 
The first difference on the right-hand side is bounded by 1/a, according to [11], 
if the x(l)- and y-sequences are correctly synchronized. The proposition then 
follows easily. o 

We illustrate this with the combination proposed by Marsaglia, Narasimhan, 
and Zaman [9]. Its first component is the SWB with base a1 = 232 - 5 and lags 
r = 43, s = 22 so that ml a,3 - aI2 +1. Its second component is an LCG 
based on the recurrence xi+, xi + 362436069 (mod 232) . The combination 
is defined using m* = 232. According to the proposition, the associated LCG 
approximates the combination with an error bounded by 1/(232 - 5) + 5/232 
6/232. It follows that this combination has an approximate lattice structure. 
This particular lattice was studied in Example 2. Its dual lattice A(d) has a 
vector of length V'6 in all dimensions d > 45. 

A substantial improvement is obtained if we use for the second component 
the Fishman and Moore "optimal" LCG described in Example 4. We then have, 
in dimension 45 for example, a shortest vector of length 74801 (approximately) 
instead of the V'. This is however essentially the best that can be done with 
a second component having a modulus of that size, and is still far from the 
.42E10 given by (4) with V-= mIm2. In fact, if we denote by Yd the upper 
bound on the length of the shortest vector for all lattices of volume 1 in Rd, 
we have the following estimate. 

Proposition 8. The LCG associated with a combination of an AWC/SWB (with 
lags s < r) with an LCG (with modulus m2 ) has in its dual lattice A(d) a vector 
of length not exceeding XYd-r m21(d-r) (resp. 3 (d - r) Yd-r m21(d-r) ) when 
r+ 1 <d < min(r+s- 1, 2r-s+ 1) (resp. d > r+1). 
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Proof: We use the vector ZEI=j ziSi-lw with I = d - r - 1, w = w(d), and 
where the coefficients zi are chosen so that I!I1 ziei is a shortest vector in 
A('+') . It then follows from Theorem 2 that the former vector belongs to A(d), 
and we obtain easily the estimates for its length with the help of the remarks 
following the theorem. a 

The constants yi are (well known and) smaller than VX2 for i < 8 [ 1, p. 332]. 
Therefore, in all cases we are far from achieving (4) when r + 1 < d < r + 8. 
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